一条矿渣粉生产线中,立磨主电机的为关键驱动设备 ,在整个生产过程中发挥着重要的作用。本案例重点阐述了立磨电机的起动方式及其特性。
1 起动方式的选用
MWLS型水阻柜原理是利用机械传动装置,均匀改变电解液中处于最大位置两平行极板的距离,从而均匀改变串入主电机转子中的阻值,由于是无级减少,直至为零 ,使电机均匀加速至额定转速,最后短接切除,实现电机的平滑起动。起动时,将高压绕线式电机转子绕组的星形接点打开,串入星形接法的水电阻,起动完毕后,通过MWLS型水阻柜上转子短接开关将星形接点短接。在大功率电机中,通过串入电机转子中阻值的均匀减少,起动转矩随阻值的均匀减少而增大,直至最大转矩,将最大起动电流控制在电机可承受范围之内 .起动时间控制在一定范围之内,起动平滑,起动过程比较理想。由于 MWLS型水阻柜用于绕线电动机,因此常称为“绕线水阻柜”;应用在立磨上起动,简称;“立磨水阻柜”。
2 MWLS型水阻柜技术特点及其控制原理
2.1 技术特点
2.1.1 起动电流小且恒定,对电网无冲击;起动电流不大于额定电流的1.3~2.5倍 ,因此可以降低电机重载起动对总降及线路的要求,减少一次性投资:
2.1.2起动平滑,减少对机械设备的冲击,可延长机械设备及电机寿命 30%左右 ;
2.1.3 容量大,起动可连续(要求水电阻水温下降至常温),次数多达5~1O次 :
2.1.4 电压下降l0~l5%仍可起动 ,只要电网电压能保证电机正常运行 。就能保证顺利起动;
2.1.5 结构简单,维护方便,可靠性优于频敏、油浸式变阻器。
2.2 主回路图
其 中:R为 串入高压绕线式电机转子的水电阻 ;M1为改变水电阻器动极板位置的普通电机。
3 水电阻阻值的确定及其调试
3.1水电阻配制
配制方案 :根据电机转子回路内电阻配液 :
3.1.1 配水电阻电解液用水 :配液用水最好是蒸馏水 ,也可以用软化水 ,最低限度
是经过净置后去掉沉淀物的生活用水,其量应比电阻箱内所需要的略多出 10~30%。
3.1.2 加入电解液的溶剂即电解粉 。
3.1.3 MWLS型水阻柜初始起动电阻 R0的确定(根据设备厂家提供参数)
R0=O.57*U2e*KF*Ki /I2e*Km≈2.75 Ω 式一
式中 :U2e :电机转子回路的开路电压(V)
I2e:电机转子回路的额定电流(A)
考虑到设备配套及生产过程的可控性 ,现作起动电阻分析如下:
电机参数:额定功率 :2800kW 功率因数:0.87
定子额定电压 :10000V 定子额定电流:194A Y型接法
转子额定电压 :2683V 转子额定电流 :637.5A Y型接法
转速 : 994r/min
(R5>R4>R3>R2>R1>R0=0)
由图可分析得 :
① Ro为理想空载特性;
② n1不变 ,不同 R时的人为机械都通过固有特性的理想空载点;
③ 转子串电阻人为特性的临界转差率S'm>Sm,且随R的增加而增加.但Tm不变:
④ 当 S'm增加到S'm
鉴于电机起动尽可能均匀、平滑的原则 ,由上分析可得MWLS型水阻柜起动电阻R的取值范围为:R> R4。
通过电机参数计算:
额定转差率:SN =(1000-994)/1000=O.6% 式二
转子阻值: r2=SN*E2N/√3* I2N=0.015 Ω 式三
额定转矩:TN =9550* PN/nn =9550*2800/994≈26901 N.m 式四
转矩倍数 :λm= Tm/ TN(式五 ),在绕线式电机中 ,λm一般取 1.8~2.2。 应串电阻阻值计算公式 :RΩ =(S'm/Sm-1)*r2 式六
电机固有机械特性表达式 (即图2中 所 对应 的曲线):
式 七
式 中,Tm 为电机所能提供的最大转矩 ;Sm=2λm*SN为最大转矩时所对应的转差率 。
从工艺及设计要求,电机起动转矩为额定转矩的 1.1倍 ,λm取 2, 起动时 S为 1。将以上已知条件代人式七 ,得:
得 S’m 的值为 3.34或 0.3,考虑电机起动的平稳,同时避免最大转矩Tm对 机械设备的冲击损伤 ,取 S’m 的值 为 3.34,从而可根据式
RΩ =(S'm/Sm-1)*r2 算 出 RΩ=2.07Ω,即为图 2中对应R5的人为机械特性 。
MWLS型立磨水阻柜将电气控制、机械和电化学技术有机地结合在一起 ,使交流电动机以较简单的结构 、较低的成本实现了额定电流、额定转矩起动。MWLS型水阻柜为需要大起动转矩、小起动电流的立磨电机找到了降低电机拖动及控制系统的成本有效方法。